p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.80C25, C23.38C24, C42.570C23, C24.133C23, (C4×D4)⋊38C22, (C4×Q8)⋊39C22, C23⋊2Q8⋊5C2, C4⋊C4.484C23, (C2×C4).170C24, (C2×C42)⋊56C22, C23⋊3D4.8C2, C22⋊Q8⋊26C22, C42⋊2C2⋊2C22, C22≀C2.7C22, (C2×D4).466C23, C4.4D4⋊78C22, C22⋊C4.96C23, (C2×Q8).283C23, C42.C2⋊52C22, C42⋊C2⋊35C22, C22.45C24⋊3C2, C22.11C24⋊16C2, C23.198(C4○D4), C4⋊D4.224C22, (C23×C4).606C22, (C22×C4).353C23, C22.D4⋊4C22, C2.18(C2.C25), C22.33C24⋊2C2, (C22×D4).424C22, C22.46C24⋊12C2, C23.36C23⋊25C2, (C2×C4⋊C4)⋊141C22, C22.27(C2×C4○D4), C2.45(C22×C4○D4), (C2×C42⋊C2)⋊65C2, (C2×C22⋊C4)⋊47C22, (C2×C22.D4)⋊60C2, C22⋊C4○(C22.D4), SmallGroup(128,2223)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.80C25
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=b, e2=a, ab=ba, dcd-1=gcg=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 764 in 526 conjugacy classes, 388 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C24, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C23×C4, C22×D4, C2×C42⋊C2, C22.11C24, C2×C22.D4, C23.36C23, C23⋊3D4, C22.33C24, C23⋊2Q8, C22.45C24, C22.46C24, C22.80C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, C25, C22×C4○D4, C2.C25, C22.80C25
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 22)(2 31)(3 24)(4 29)(5 15)(6 12)(7 13)(8 10)(9 18)(11 20)(14 19)(16 17)(21 26)(23 28)(25 32)(27 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 31 27 23)(2 32 28 24)(3 29 25 21)(4 30 26 22)(5 10 20 14)(6 11 17 15)(7 12 18 16)(8 9 19 13)
(1 11)(2 16)(3 9)(4 14)(5 30)(6 23)(7 32)(8 21)(10 26)(12 28)(13 25)(15 27)(17 31)(18 24)(19 29)(20 22)
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(13 25)(14 26)(15 27)(16 28)(17 31)(18 32)(19 29)(20 30)
G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,31)(3,24)(4,29)(5,15)(6,12)(7,13)(8,10)(9,18)(11,20)(14,19)(16,17)(21,26)(23,28)(25,32)(27,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,27,23)(2,32,28,24)(3,29,25,21)(4,30,26,22)(5,10,20,14)(6,11,17,15)(7,12,18,16)(8,9,19,13), (1,11)(2,16)(3,9)(4,14)(5,30)(6,23)(7,32)(8,21)(10,26)(12,28)(13,25)(15,27)(17,31)(18,24)(19,29)(20,22), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,31)(3,24)(4,29)(5,15)(6,12)(7,13)(8,10)(9,18)(11,20)(14,19)(16,17)(21,26)(23,28)(25,32)(27,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,27,23)(2,32,28,24)(3,29,25,21)(4,30,26,22)(5,10,20,14)(6,11,17,15)(7,12,18,16)(8,9,19,13), (1,11)(2,16)(3,9)(4,14)(5,30)(6,23)(7,32)(8,21)(10,26)(12,28)(13,25)(15,27)(17,31)(18,24)(19,29)(20,22), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,22),(2,31),(3,24),(4,29),(5,15),(6,12),(7,13),(8,10),(9,18),(11,20),(14,19),(16,17),(21,26),(23,28),(25,32),(27,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,31,27,23),(2,32,28,24),(3,29,25,21),(4,30,26,22),(5,10,20,14),(6,11,17,15),(7,12,18,16),(8,9,19,13)], [(1,11),(2,16),(3,9),(4,14),(5,30),(6,23),(7,32),(8,21),(10,26),(12,28),(13,25),(15,27),(17,31),(18,24),(19,29),(20,22)], [(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(13,25),(14,26),(15,27),(16,28),(17,31),(18,32),(19,29),(20,30)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4L | 4M | ··· | 4AD |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C2.C25 |
kernel | C22.80C25 | C2×C42⋊C2 | C22.11C24 | C2×C22.D4 | C23.36C23 | C23⋊3D4 | C22.33C24 | C23⋊2Q8 | C22.45C24 | C22.46C24 | C23 | C2 |
# reps | 1 | 1 | 2 | 2 | 4 | 1 | 4 | 1 | 8 | 8 | 8 | 4 |
Matrix representation of C22.80C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 1 | 4 | 3 | 1 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 1 | 1 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 2 | 3 | 1 | 2 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 2 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 4 | 3 |
0 | 0 | 2 | 3 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,1,3,2,0,0,0,4,0,0,0,0,2,3,0,1,0,0,0,1,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,1,4,0,0,0,3,0,1,0,0,1,1,0,0,0,0,0,2,0,2],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,3,2,0,0,1,0,2,3,0,0,0,0,4,0,0,0,0,0,3,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,2,0,0,0,1,0,3,0,0,0,0,0,1,0,0,0,0,0,2,4] >;
C22.80C25 in GAP, Magma, Sage, TeX
C_2^2._{80}C_2^5
% in TeX
G:=Group("C2^2.80C2^5");
// GroupNames label
G:=SmallGroup(128,2223);
// by ID
G=gap.SmallGroup(128,2223);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,184,570,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=b,e^2=a,a*b=b*a,d*c*d^-1=g*c*g=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations